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ABSTRACT 

Several commercially available photoemissive surfaces (PES) and 

electroemissive surfaces (ES) are evaluated to find:  1. the most efficient 

PES in the presence of sunlight-like optical signals, and, 2. the most effi- 

cient ES/PES combination ("sandwich") for the transition between stages in an 

optical sensor employing, for example, an image intensifier tube coupled to an 

ebsicon-type camera tube.  In the first case, an S-20VR PES is shown to be 

superior; while in the second case, a P-ll/S-20 sandwich is shown to be the 

superior combination. 
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PHOTOEMISSIVE AND ELECTROEMISSIVE 

SURFACES AND SANDWICHES 

In an earlier Note,  flux rate density standards for sunlight incident 

on S-20 and S-25 photoemissive surfaces were developed.  The present Note builds 

on that report to consider additional photoemissive surfaces, and is extended 

to consider the case in which a phosphor is the "source" for a photoemissive 

surface.  The intent here is to specify an optimum first photosurface for an 

ebsicon-type tube and an optimum phosphor/photoemissive-surface combination 

("sandwich") for the design of an externally intensified ebsicon-type camera 

tube.  The optical signal of interest is assumed to have the spectral charac- 

teristics of sunlight.  Only those materials which have been presented in the 

commercial literature as being available in large-area formats (40 mm to 80 mm) 

have been considered in this work. 

Figure 1 presents the quantum efficiencies of five photoemissive sur- 

faces and the "smoothed" photon flux rate density of sunlight through one 

standard air mass as functions of the wavelength.  The S-20 curve is the typi- 

cal curve described earlier, while the MA-2 and MA-4 curves are from ITT data, 

the S-20VR curve is from VARO data, and the 119/131 curve is from RCA data. 

The photoelectron flux rate densities for sunlight over the wavelength 

range of 0.300 to 0.920 micron have been obtained by "multiplying" the spec- 

tral curve of each surface with the flux curve of sunlight in intervals of 

.020 micron.  The results of these convolutions, normalized to the S-20/sun 

product, are shown in Table 1.  The S-20VR/sunlight result is better than the 

standard S-20/sunlight result by a factor of 1.20, or 0m.20 detector magnitudes. 

This corresponds, approximately, to the "gain" of one air mass at an elevated 

(*1500 m) electro-optical site on a photometric night.   In the detection of 

space objects by reflected sunlight, assuming the spectrum unchanged by re- 

flection, this signal gain of 0 .02 is directly translatable to an increased 

detection capability of 0 .10 on a typical night.  It is to be noted that if 

the spectrum should depart from that of sunlight under reflection, then the 
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relative merits of the S-20 and S-20VR surfaces will be altered.  In Appendix A 

may be found the tabulated results for this section of this report. 

TABLE I 

The normalized (to S-20) result of convolving the quantum 
efficiency curves of the given photosurfaces with the photon 
flux rate density of "one-air-mass" sunlight. 

Photosurface Normalized Photoelectron 
Flux Rate Density 

Maximum Increase in 
Detection Signal Magnitude 

S-20 

119/131 

MA-2 

MA-4 

S-20VR 

1.00 

0.79 

1.02 

0.99 

1.20 

-0.26 

+0.02 

+0.20 

Figure 2 presents the wavelength curves for P-ll and P-20 phosphors, 

and for S-20 and S-20VR photosurfaces.  The ordinate for the phosphors is 

given in photons emitted per absorbed lOkV photoelectron per nm at a given 

wavelength. Assuming perfect coupling between the phosphor and the photo- 

emissive surface, the multiplication and summation of appropriate entries on 

the graph, for a given sandwich, directly yields a measure of the maximum 

current gain to be expected from the combination.  In the real situation, the 

coupling efficienty via fiber-optic plates, is of the order of fifty percent. 

The S-20 and S-20VR photosurfaces are stressed in this section for two 

reasons.  Two of the surfaces (MA-2, and 119/131), considered earlier, clearly 

are not as efficient as the S-20 and S-20VR surfaces when used with phosphors 

of the type listed above, while the third surface, MA-4, is surpassed in per- 

formance is most instances. The second reason for stressing S-20 and S-20VR 
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photosurfaces is that they are more widely available than are the other photo- 

surfaces. 

Table II summarizes the current gain to be expected from the various 

sandwich combinations.  The results have been normalized to the P-20/S-20 

combination.  It is clear that P-ll/S-20 yields the highest possible current 

gain, approximately 2.3 times that of the commonly used P-20/S-20 combination. 

For equal current-gain requirements, the former case would require less than 

one-half the photoelectron accelerating potential required in the latter case. 

This is a significant advantage in cascaded systems in which one is dealing 

with tens of kilovolts of accelerating potential-difference between the first 

photocathode and the target-plane of the camera tube.  The frequency of in- 

ternal ionic events and breakdown events should be reduced drastically at the 

lower potential difference. 

The tabulated results for this section of this report may be found in 

Appendix B. 

TABLE II 

The current-gain to be expected of various phosphor/photocathode 
combinations. The results have been normalized to the P-20/S-20 
combination. 

Phosphor S-20 S-20VR MA-4 

P-20 

P-ll 

1.00 

2.29 

1.15 

1.27 

1.05 

1.32 



RECOMMENDATIONS AND CONCLUSIONS 

1_. Unintensified ("Bare") Camera Tube. 

Optimum performance will be achieved by the incorporation of an S-20VR 

photosurface in the image section of the bare camera tube, as the first photo- 

cathode.  However, the realization of an S-20VR surface in an integrated camera 

tube may incur added costs in that the majority of the manufacturers of ebsicon- 

type camera tubes are "geared to" the fabrication of S-20 surfaces.  That is, 

a number of experimental tube "starts" may be required to bring the technology 

of a given manufacturer to the point that satisfactory S-20VR surfaces may be 

fabricated with the same consistency with which S-20 surfaces are fabricated at 

the present time.  If the added costs prove to be reasonable, this is the way 

to proceed.  Then, for a given "sun-like" optical signal, the signal photo- 

electron flux rate density will be increased by twenty percent over that pro- 

vided by the popular S-20 first photocathode. 

2.     Intensified Camera Tube. 

It is clear from Table II that the "sandwich" between the external 

image intensifier and the ebsicon-type camera tube should consist of a P-ll 

phosphor and an S-20 photoemissive surface.  The current gain in this instance 

will be approximately 2.3 times greater than that for the widely used P-20/ 

S-20 sandwich.  The significant practical advantages have already been described. 

In this case, unlike the case of the bare camera tube, there is no pro- 

blem in obtaining a first photosurface (now on the intensifier) of S-20VR ma- 

terial. Thus, the maximum increase in the signal charge at the target of the 

sensor for a given "sun-like" optical signal will be 1.2 x 2.3 = 2.8 times 

that to be expected for an externally intensified camera-tube sensor employing 

S-20 and P-20 materials, and operating at the same potential-difference levels. 

From the above, it is concluded that the "no risk" approach - and one 

that achieves maximum performance - for the externally intensified sensor is to 

incorporate an S-20VR first photocathode and a P-ll anode in the intensifier, 

and to couple this to the S-20 second photocathode of a camera tube. 



In the case of the bare tube, while an S-20VR photocathode is obviously 

desirable, its  fabrication in an ebsicon-type camera tube may present initial 

difficulties.  This fact, coupled with the possible wish for the interchang- 

ability of camera tubes in a given system, may well lead to the decision to 

specify S-20 photosurfaces for all camera tubes, whatever the application, 

thereby foregoing tha improvement promised by the S-20VR photosurface in the 

bare tube application. 
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APPENDIX A 

PHOTOELECTRON FLUX RATE DENSITIES OF SELECTED PHOTOEMISSIVE 

SURFACES EXPOSED TO "ONE-AIR-MASS" SUN LIGHT 

Definitions of Column Headings 

AX wavelength interval, in microns. 

X wavelength, in microns. 

SUN (S)     the photon flux rate density of "one-air-mass" sunlight within 

AA.  (1019 sec-1 m"2/10"2um.) 

S-20 

MA-2 

S20-VR    \ quantum efficiency of photoemissive surface, in percent, 

MA-4 

119/131 

119/131-S 

S-20-S 

MA-2-S 

S20-VR-S 

MA-4-S 

convolution of each surface with S within AA.  These entries are 
the photoelectron flux rate densities. 



APPENDIX A 

A A SUN, S S-20 MA-2 S20-VR MA-4 119/131 

0.02 0.30 0.28 1.00 6.20 1.7 1.7 2.2 
.32 0.90 6.90 7.20 2.2 2.2 1.8 
.34 1.70 10.40 8.20 2.9 3.0 3.0 
.36 2.00 13.40 9.00 4.0 3.4 1.45 
.38 2.52 15.50 10.00 4.9 4.1 1.75 
.40 3.68 17.50 10.50 5.9 5.0 2.3 
.42 5.10 18.70 11.0 6.7 6.2 3.4 
.44 5.84 18.60 11.6 7.4 7.4 4.65 
.46 7.18 17.10 12.0 8.0 8.5 5.95 
.48 7.60 15.10 12.3 8.9 9.5 7.25 
.50 7.82 13.40 12.4 9.5 10.4 8.35 
.52 7.88 12.20 12.3 10.1 10.4 9.15 
.54 8.04 10.90 12.1 10.5 10.3 9.7 
.56 8.30 9.90 11.8 10.9 10.0 10.0 
.58 8.52 8.80 11.1 11.2 9.5 9.9 
.60 8.56 7.70 10.5 11.4 9.1 9.3 
.62 8.50 6.70 9.5 11.5 8.7 8.55 
.64 8.46 5.70 8.5 11.5 8.2 7.85 
.66 8.40 4.70 7.8 11.4 7.9 7.1 
.68 8.20 3.80 6.6 11.0 7.5 6.4 
.70 8.10 3.10 5.0 10.8 7.1 5.15 
.72 8.08 2.60 4.6 10.0 6.8 5.0 
.74 7.70 2.20 3.8 9.5 6.3 4.3 
.76 7.50 1.70 2.8 8.6 5.8 3.7 
.78 7.20 1.30 2.0 7.9 5.4 3.05 
.80 6.96 0.90 1.2 6.7 5.0 2.5 
.82 6.66 0.50 5.4 4.4 1.85 
.84 6.26 0.20 4.5 3.5 1.25 
.86 5.78 0.05 3.1 3.0 0.75 
.88 5.42 2.0 2.0 0.35 
.90 4.92 0.9 1.1 0.05 
.92 4.52 

198.58 
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APPENDIX A (Continued) 

AX       \ 119/131-S S-20-S    MA-2-S    S20-VR-S MA-4-S 

0.02 0.30 0.62 0.28 1.74 0.48 0.48 
.32 1.62 6.21 6.48 1.98 1.98 
.34 2.55 17.68 13.94 4.93 5.10 
.36 2.90 26.80 18.00 8.00 6.80 
.38 4.41 39.06 25.20 12.35 10.33 
.40 8.46 64.40 38.64 21.71 18.40 
.42 17.34 95.37 56.10 34.17 31.62 
.44 27.16 108.63 67.75 43.22 43.22 
.46 42.72 122.78 86.16 57.44 61.03 
.48 55.10 114.76 93.48 67.64 72.20 
.50 65.29 104.79 96.97 74.29 81.33 
.52 72.10 96.14 96.93 79.59 81.95 
.54 77.99 87.64 97.28 84.42 82.81 
.56 83.00 82.17 97.94 90.47 83.00 
.58 84.35 74.98 94.57 95.42 80.94 
.60 79.61 65.91 89.88 97.58 77.89 
.62 72.68 56.95 80.75 97.75 73.95 
.64 66.41 48.22 71.91 97.29 69.37 
.66 59.64 39.48 65.52 95.76 66.36 
.68 52.48 31.16 54.12 90.20 61.50 
.70 45.77 25.11 40.50 87.48 57.51 
.72 40.40 21.01 37.17 80.80 54.94 
.74 33.11 16.94 29.26 73.15 48.51 
.76 27.75 12.75 21.00 64.50 43.50 
.78 21.96 9.36 14.40 56.88 38.88 
.80 17.40 6.26 8.35 46.63 34.80 
.82 12.32 3.33 35.96 29.30 
.84 7.83 1.25 28.17 21.91 
.86 4.34 0.29 17.92 17.34 
.88 1.92 10.84 10.84 
.90 0.25 

1089.48 

4.43 

1661.45 

5.41 

1379.71 1404.04 1373.19 
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APPENDIX B 

SANDWICH "CURRENTS" OF SELECTED COMBINATIONS 

OF PHOSPHORS AND PHOTOEMISSIVE SURFACES 

Definitions of Column Headings 

AA 

A 

Pll 

P20 

S-20 

S20-VR 

MA-4 

P20-MA-4 

P11-S20 

P11-S20-VR 

P20'S20 

P20-S20VR 

Pll-MA-4 

wavelength interval in microns. 

wavelength, in microns. 

phosphor responses. (Photons per nm interval per 10 k V 
electron. These entries have not been multiplied by 8.1 
for the actual number of photons.) 

quantum efficiency of each photosurface, in percent, 

entries proportional to sandwich current within AA interval. 

13 



APPENDIX B 

AA       X       PH     P20       S20      S20VR    MA-4 

0.01 0.35 0.00 12.00 4.00 3.20 
.36 0.20 13.50 4.30 3.40 
.37 0.30 14.90 4.70 3.80 
.38 0.55 16.10 5.10 4.10 
.39 0.85 17.00 5.50 4.70 
.40 1.25 17.80 5.90 5.00 
.41 1.90 18.25 6.30 5.70 
.42 2.90 18.70 6.70 6.20 
.43 4.30 18.75 7.00 6.80 
.44 6.55 18.35 7.30 7.40 
.45 9.70 0.00 18.00 8.00 7.40 
.46 11.50 0.20 17.10 8.40 8.50 
.47 11.70 0.45 16.00 8.60 9.00 
.48 11.00 0.70 15.10 8.90 9.50 
.49 9.50 1.05 14.40 8.80 9.90 
.50 8.30 1.50 13.40 9.00 10.20 
.51 6.70 2.00 12.90 9.30 10.40 
.52 5.00 3.00 12.25 9.50 10.50 
.53 3.60 4.30 11.65 9.70 10.40 
.54 2.40 5.60 11.10 9.90 10.30 
.55 1.55 7.15 10.40 10.00 10.20 
.56 1.10 7.90 9.70 10.30 10.00 
.57 0.80 7.80 9.20 10.60 9.80 
.58 0.55 6.60 8.50 10.75 9.50 
.59 0.35 5.60 8.00 10.85 9.30 
.60 0.20 4.70 7.60 11.00 9.10 
.61 0.10 3.90 6.90 11.30 8.90 
.62 0.05 3.20 6.50 11.35 8.70 
.63 0.00 2.50 6.00 11.45 8.40 
.64 2.00 5.70 11.50 8.20 
.65 1.50 5.20 11.50 8.00 
.66 1.25 4.60 11.50 7.90 
.67 0.90 4.20 11.30 7.70 
.68 0.65 3.90 11.10 7.50 
.69 0.45 3.50 10.80 7.30 
.70 0.30 3.15 10.50 7.10 
.71 0.25 2.80 10.40 6.90 
.72 0.15 2.60 10.15 6.80 
.73 0.10 2.40 9.80 6.40 
.74 0.05 2.20 9.30 6.20 
.75 0.00 2.00 9.05 6.00 
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APPENDIX B (Continued) 

AX 

0.01 

\ P20-MA-4 P11-S20 P11-S20VR P20-S20 P20-S20VR Pll-MA 

0.35 0.00 0.00 0.00 
.36 2.70 0.86 0.68 
.37 4.47 1.41 1.14 
.38 8.86 2.81 2.26 
.39 14.45 4.68 4.00 
.40 22.25 7.38 6.25 
.41 34.68 11.97 10.83 
.42 54.23 19.43 17.98 
.43 80.62 30.10 29.24 
.44 120.19 47.82 48.47 
.45 0.00 174.60 77.60 0.00 0.00 71.78 
.46 1.70 196.65 96.60 3.42 1.68 97.75 
.47 4.05 187.20 100.62 7.20 3.87 105.30 
.48 6.65 166.10 95.70 10.57 6.09 104.50 
.49 10.39 136.80 83.60 15.12 9.24 94.05 
.50 15.30 111.22 74.70 20.10 13.50 84.66 
.51 20.80 86.43 62.31 25.80 18.60 69.68 
.52 31.50 61.25 47.50 36.75 28.50 52.50 
.53 44.72 41.94 34.92 50.10 41.71 37.44 
.54 57.68 26.64 23.76 62.16 55.44 24.72 
.55 72.93 16.12 15.50 74.36 71.50 15.81 
.56 79.00 10.67 11.83 76.63 81.37 11.00 
.57 76.44 7.36 8.48 71.76 82.68 7.84 
.58 62.70 4.68 5.92 56.10 70.95 5.23 
.59 52.08 2.80 3.79 44.80 60.76 3.26 
.60 42.77 1.52 2.20 35.72 51.70 1.82 
.61 34.71 0.69 1.13 26.91 44.07 0.89 
.62 27.84 0.33 0.57 20.80 36.32 .44 
.63 21.00 0.00 15.00 28.63 0.00 
.64 16.40 11.40 23.00 
.65 12.00 7.80 17.25 
.66 9.88 5.75 14.38 
.67 6.93 3.78 10.17 
.68 4.88 2.54 7.22 
.69 3.29 1.58 4.86 
.70 2.13 0.95 3.15 
.71 1.73 0.70 2.60 
.72 1.02 0.39 1.52 
.73 .64 0.24 0.98 
.74 .31 0.11 0.47 
.75 

721.47 1575.45  873.19 688.53 792.21 909.52 
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